Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor
نویسندگان
چکیده
This study examined the performance and photo-bias stability of double-channel ZnSnO/InZnO (ZTO/IZO) thin-film transistors. The field-effect mobility (μFE) and photo-bias stability of the double-channel device were improved by increasing the thickness of the front IZO film (t(int)) compared to the single-ZTO-channel device. A high-mobility (approximately 32.3 cm(2)/Vs) ZTO/IZO transistor with excellent photo-bias stability was obtained from Sn doping of the front IZO layer. First-principles calculations revealed an increase in the formation energy of O vacancy defects in the Sn-doped IZO layer compared to the IZO layer. This observation suggests that the superior photo-bias stability of the double-channel device is due to the effect of Sn doping during thermal annealing. However, these improvements were observed only when t(int) was less than the critical thickness. The rationale for this observation is also discussed based on the oxygen vacancy defect model.
منابع مشابه
Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملHydrogen Bistability as the Origin of Photo-Bias-Thermal Instabilities in Amorphous Oxide Semiconductors
The lack of transparency and high temperature processing in silicon-based electronics prevent their applications in transparent Zinc-based metal oxide semiconductors have attracted attention as an alternative to current silicon-based semiconductors for applications in transparent and fl exible electronics. Despite this, metal oxide transistors require signifi cant improvements in performance an...
متن کاملA compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor
Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...
متن کاملChannel thickness dependency of high-k gate dielectric based double-gate CMOS inverter
This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...
متن کاملGaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling
Lateral n-channel enhancement-mode GaN metal-oxide-semiconductor MOS field-effect transistors and lateral capacitors have been fabricated on a p-type epi-GaN substrate semiconductor and electrically characterized at different temperatures. A clear positive behavior of the inversion channel mobility with temperature has been obtained. A physics-based model on the inversion charge and charge trap...
متن کامل